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We consider efficient organizations for communication re- 
sources which are accessed by a large number of geographically 
distributed terminals. Developing a model for systems built 
with dedicated line channels, we answer the following ques- 
tions: What is the role of hierarchies in organizing large 
communication nets? How should a large network be decom- 
posed into smaller parts? What cost vs. performance gains can 
be achieved by such a decomposition? 

Assuming that the traffic to be carried and the mean 
response time are specified and that the goal is to minimize the 
necessary cost, we define burstiness and find the following: 
Dedicating channels is reasonable when the traffic is steady 
(i.e., not bursty) but when the traffic is bursty, the cost of 
simple dedicated-channel systems grows too fast with the num- 
ber of terminals. By introducing regular hierarchical structures 
we show that the cost of bursty systems can significantly be 
reduced. The optimal structure must be balanced. The optimal 
number of levels and the ratio of the contribution of the 
different levels to both cost and delay is simply determined by 
a few key systems parameters. 
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1. Introduction 

Designing a communication network for a given 
traffic requirement consists of balancing cost and 
performance. Faced with the task of analyzing 
networks we must abstract the relevant features of 
traffic, performance and cost in order to arrive at 
a manageable model. In this paper we develop 
such a model and use it to answer the following 
questions: What is the role of hierarchies in 
organizing large communication nets? How should 
a large network be decomposed into smaller parts? 
What cost vs. performance gains can be achieved 
by such a decomposition? 

In order to be able to treat the issue of 
hierarchies in large networks, we must drastically 
simplify all other aspects of our model. To char- 
acterize traffic we shall assume that messages 
originate at m different sources (buffered termi- 
nals), that the appearance of messages at each 
source is an independent Poisson process with rate 
S / m  messages per second, and that the length of 
messages has an exponential distribution. Let us 
choose the information unit so that the average 
length of a message is equal to 1; this is simply a 
convenient normalization, which is equivalent to 
measuring communication capacity in messages 
(of an average length) per second, instead of mea- 
suring in bits per second. Assume all messages are 
directed to one destination (computer), which we 
shall sometimes call the station. We shall char- 
acterize performance by T, the average total time 
spent by a message in the system. 

If all terminals are in one place, the best thing 
is to connect them all to the destination by a 
single communication channel. Each message will 
join a queue at the terminals' end of the channel, 
and when its turn comes, will be transmitted to its 
destination. We thus have a classical M / M / 1  
queueing system [6] whose service rate is C, i.e., 
the capacity (bandwidth) of the common com- 
munication channel, measured in messages per 
second. The necessary C in such an M / M / 1  
system when S and T are given is 

1 
CM/M/1 = S -4- ~ .  (1) 

If terminals are not co-located and cannot simply 
join a queue and share a single channel, we may 
dedicate a subchannel with capacity C / m  to each. 

Each message will therefore have to pass through 
one of m identical queueing systems (with arrival 
rate S / m  and service rate C / m  each). The total 
channel capacity needed in such a network with m 
dedicated subchannels is 

m 
Ged = S + ~ .  (2) 

Dividing equations (1) and (2) we get 

Cd~ S T +  m 

CM/M/1 S T +  1 " 
(3) 

We shall call the inverse of S T  the 'burstiness' [2] 
of the system. When S T  is small (ST<< 1), the 
system is bursty. When ST  is large (ST  >> 1), the 
system is steady. Using these terms we see, from 
equation (3), that when the system is very bursty, 
using m dedicated channels requires m times the 
amount of total channel capacity as compared 
with sharing a single M / M / 1  channel. When the 
system is very steady, m dedicated channels are 
almost as good as a single M / M / 1  channel. Deft- 
nitions equivalent to our burstiness were intro- 
duced independently by others [4,9]. This is not 
surprising, since S T  is the only dimensionless 
number one can form with S and T. 

When the traffic is bursty, there are only a few 
messages in the system. There is little congestion, 
and the delay suffered by messages is mainly 
determined by the time necessary to transmit them. 
The communication resource is only lightly utilized 
in a bursty system. When the traffic is steady, the 
communication resource is heavily utilized and the 
delay is mainly determined by the congestion. 

It should be noted that we assume arrivals of 
messages are independent, and use the term 
'bursty '  to characterize ST. Others sometimes use 
the term 'bursty '  to describe a non-Markovian 
system, in which separate messages tend to con- 
gregate and arrive together. 

When terminals are distributed in space, it is 
very hard for them to perfectly share common 
communication resources. People have therefore 
developed many schemes, often called access 
modes, for deciding which terminal will use which 
part of the communication resources at a given 
time (for examples, see [1,3,7,8,10,12]). 

The performance of many of the access modes 
is extremely hard to obtain in an analytic way 
because they involve complex systems of inter- 
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act ing  queues. Whi le  it  is of ten easy to evaluate  an 
access mode  for a small  range of  pa rame te r s  by  
s imula t ion ,  it is ha rd  to use s imula t ion  to gain 
insight  into which access mode  is best  for which 
range  of  parameters .  We  shall  t rea t  ana ly t ica l ly  
very large and  very burs ty  commun ica t i on  net- 
works  using ded ica ted  line channels ,  and  shall  
answer  the fol lowing quest ion:  F o r  a given t raff ic  
and  requi red  pe r fo rmance ,  can the cost  of  a very 
bu r s ty  system be reduced  by a hierarchical  organi-  
za t ion? 

W e  shal l that  assume that  m, the n u m b e r  of 
terminals ,  is very large, that  te rminals  are  uni-  
formly  d i s t r ibu ted  in their  very large geographic  
region,  and  that  all t e rmina ls  con t r ibu te  equal ly  to 
the traffic. The  reason is that  we are in teres ted  in 
hierarchies  that  arise in the design process,  and  
not  in hierarchies  that  are imposed  by  the geogra-  
phy  of the region and by  uneven traff ic  require-  
ments .  It is also of ten true that  the un i fo rm case is 
the worst  case for a d i s t r ibu ted  system: If t raff ic  is 
especial ly  concen t r a t ed  in some terminals  or  re- 
gions,  then the system would  be less d is t r ibuted .  

We shall  assume that  the cost  of  a l ine channel  
of  length l and  capac i ty  C is laC b. When  there is 
an economy  of  scale in buying  capaci ty ,  we have 
b < 1. When  there is no economy  of  scale, we have 
b = 1. There  is no reason to cons ider  d i s economy  
of  scale, and  there is no reason,  therefore,  to 
cons ider  the case when b > 1. W h e n  the cost  de-  
pends  l inear ly  on length, we have a = 1. When  the 
cost  of equ ipmen t  at the ends  of the lines is 
s ignif icant ,  it  is na tu ra l  to assume that  a < 1. We 
have a d o p t e d  the s implest  poss ib le  a s sumpt ions  
on cost  that  still represent  e conomy  of  scale and 
line vs. equ ipmen t  cost. We  canno t  general ize our  
resul ts  to other,  more  compl ica ted ,  cost  funct ions.  

Real  systems are  bui l t  slowly. Inves tments  have 
to be  based  on es t imates  of  future  demand ,  and  
the d e m a n d  in the future  is inf luenced by  the 
existence of  the system and the qual i ty  of  service. 
W e  shall  ignore  this in te rac t ion  over time, and  
assume that  our systems are bui l t  in o rde r  to 
sat isfy  the known d e m a n d  and  service require-  
men t s  at a given t ime. 

In Sect ion 2 we solve the p rob l em of  a l locat ing  
resources  to subsystems,  a p r o b l e m  that  mus t  be 
faced whenever  a sys tem is decomposed .  In  Sec- 
t ion 3 we p ropose  and  analyze  a heuris t ic  for 
decompos ing ,  a heuris t ic  that  leads to regular  
h ierarchica l  s tructures.  

2. Decomposition and resource allocation 

Assume  we have a p rocedure  for des igning a 
very burs ty  l ine-based  c o m m u n i c a t i o n  system, 
given m, the number  of equal ly  ta lkat ive  and  
un i fo rmly  d i s t r ibu ted  terminals .  Deno te  by  L the 
size of  the region over  which te rmina ls  are dis- 
t r ibuted.  The  length of  all l ines connec t ing  termi-  
nals  to the one s ta t ion is p r o p o r t i o n a l  to L, and  
the cost  of  these lines is therefore  p r o p o r t i o n a l  to 
L a. When  the traff ic  is very burs ty ,  the typical  
capac i ty  of  every line channel  must  be p ropo r -  
t ional  to 1/T, and it follows that  the total  system 
cost  is p r o p o r t i o n a l  to 1/T ~. The total  cost  D can 
therefore  be wri t ten,  wi thout  loss of  general i ty ,  as 

L a 
D = ~ f .  (4) 

Given  our  a s sumpt ion  on the cost  of ind iv idua l  
lines, the dependence  of  D on L and on T is an 
inevi table  result  of the traff ic  requirements ,  i.e., of 
want ing  to c o m m u n i c a t e  across  d is tances  ( that  are 
typica l ly  L )  over lines (whose capac i ty  must  typi-  
cal ly  be 1/T). The f appea r ing  in equa t ion  (4) 
shows how the system cost  d e p e n d s  on its be ing  
d is t r ibu ted ,  and  character izes  the qual i ty  of  the 

design procedure ,  f con ta ins  some geometr ic  con-  
stants,  and  a dependence  on the number  of  termi-  
nals rn. 

F o r  example ,  cons ider  s tar  ne tworks  in which 
every te rmina l  is connec ted  by  an ind iv idua l  line 
di rect ly  to the stat ion.  The  cost  of  such ne tworks  
is p r o p o r t i o n a l  to the n u m b e r  of  lines, i.e., to the 
n u m b e r  of  terminals .  Assume  that  te rminals  are 
un i fo rmly  d i s t r ibu ted  in a disk of rad ius  L, with 
the s ta t ion in its middle ;  assume all te rminals  are 
equal ly  ta lkat ive,  and  that  a = b = 1. If we assign 
to all l ines capac i ty  C = 1/T and  make  the aver- 
age t e rmina l - s ta t ion  de lay  the same for all te rmi-  
nals, the cost  will be 

L 2  D = ~ m .  

The geometr ic  cons tan t  ~ is the average d i s tance  
f rom a unit  disk to its center.  If  we a l locate  
capac i ty  to min imize  the cost  and  d e m a n d  only 
that  the de lay  over  all t e rmina ls  will be T, the cost  
will be sl ightly smaller:  

L 16 D = ~ m .  

The geometr ic  cons tan t  here is 16 25, the square  of  
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the average square root of the distance from a unit 
disk to its center. (See the following discussion of 
optimal allocation and equation (6)). 

We shall usually ignore the geometric con- 
stants, and address the dependence on m. How 
fast does f grow with m? Must it grow that fast? 
Can we reduce the cost of a communication sys- 
tem by decomposing it into small parts, and by 
applying the given design procedure to each part  
separately? How should we decompose a large 
system and how should we allocate resources to 
the different subsystems? We shall start with the 
latter question. Assume the cost of the j t h  subsys- 
tem is given by equation (4), i.e., 

La J 

and that the total system cost is D = F~jDj. As- 
sume that the delay measure T is given by the 
following weighted average 

r = E S j ~ / S ,  (5) 
J 

where Sj is the traffic carried by the j t h  subsys- 
tem and S is the total traffic. The problem of 
allocating resources to subsystems can be posed as 
an optimization problem: choose the ~ (and the 
Dj) in order to minimize D. But, the Tj cannot be 
chosen freely. Since T is given, their choice is 
constrained by equation (5). This problem of con- 
strained optimization can be solved very simply, 
using a Lagrangean multiplier. When the optimal 
choice of ~ is made, the total cost is given by 

1 
D - - - B  a+', (6) 

(ST )  b 

where 

B = E 
J 

Minimizing the cost of a hierarchical structure 
often involves minimizing B given in equation (6), 
which we shall call the B-term. 

When resources are allocated to subsystems in 
the optimal way, which leads to (6), we also get 

Dk SkTk [ LZS~ h ] (7) 

Fhat is, the contributions of subsystems to the 
delay measure and to the cost are directly propor-  

tional to their contributions to the B-term. (Equa- 
tions (6) and (7) were obtained while minimizing 
D given T, but they are also valid when minimiz- 
ing T given D.) 

When our subsystems consist of a single line 
each, equation (6) is very similar to Kleinrock's 
optimal capacity assignment [5], with the follow- 
ing difference: By restricting ourselves to very 
bursty traffic, we can handle cost functions with 
any b, not just the b = 1 case. While only the 
average delay T appears in our formulas, our main 
results will remain valid when the variance, range 
or distribution of acceptable delay values is speci- 
fied in addition to the average delay. For example, 
Meister et al. [11] propose a performance measure 
that can influence the variance of delay. If their 
T (k) is used as a performance measure and b / k  is 
substituted for b, equations (6) and (7) remain 
valid with only slight modifications. 

3. Regular hierarchical structures 

Having decomposed a communication system, 
equation (6) gives a way to allocate resources to its 
various parts. We do not know which is the opti- 
mal way to decompose a large system for our goal 
of minimizing cost, so we shall use a heuristic. To 
introduce it, consider the following two-level 
structure: Assume that the m terminals are uni- 
formly distributed in a region of the plane, and 
divide this region into P regions. Place a con- 
centrator in the middle of each region. Connect all 
P concentrators to the station according to a given 
design procedure, and connect all terminals in a 
given subregion to ' their '  concentrator according 
to the same design procedure. For simplicity of 
our formulas we shall assume that all subregions 
have the same shape as the original region, and 
ignore the geometric constraints that depend on 
this common shape. 

We shall call this hierarchical system a two-level 
regular hierarchical system, where the word ' regu- 
lar' refers to the fact that all regions are of the 
same size and shape, and that all concentrators 
are placed in the middle of their regions. We shall 
call the communication subsystem connecting 
concentrators to the station the top level, and the 
subsystem connecting terminals to concentrators 
the bot tom level. The top level consists of a net- 
work within the P concentrators acting as termi- 
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nals, and the bottom level consists of P networks 
with m / P  terminals each. 

Let L be the typical length of the original 
region. The typical length of each one of the P 
subregions is L/~/ f f ,  and the total traffic arriving 
at each concentrator is S / P .  Applying (6) to both 
levels we find that the contribution of the bottom 
level to the B-term is 

P [ L a ( 1 / p  ) u / 2 ( S / p ) b f ( m / p )  ] ,/(b+ 1), 

where we have explicitly shown the dependence of 
f on m / P ,  the number of terminals in every 
subregion. The contribution of the top level to the 
B-term is 

Summing these two gives the B-term of the two- 
level regular hierarchical system: 

B = [LaSb]' /(b+l)[f(P)l/(h+l)+ p ( 1 - a / 2 ) / ( b +  l) 

f (m /p ) l / ( b+ ' ) ] .  (8) 

Which P will give the least cost two-level system? 
To find the best P that will minimize B we must 
say something about the f-function. How fast does 
the cost grow when m grows? Does f ( m )  grow 
like an exponent of m, like a polynomial in m, or 
like the logarithm of m? The cost of the simplest 
possible star network is proportional to m, so 
there is no need to consider exponential growth. If 
cost grows like the logarithm of m, we are in good 
shape and cannot improve matters by regular 
hierarchical structures. When f ( m )  grows like a 
polynomial in m, it is dominated, for large m, by 
its leading term. We shall, therefore, only treat the 
case when, for large m, the following is a good 
approximation: 

f ( m )  = m g. (9) 

If g is small, our original design procedure is 
already quite good. We shall show below that if g 
is larger than 1 - a / 2 ,  then a two-level hierarchi- 
cal system with the best P will he better than a 
one-level system. We shall now calculate this best 
P. 

Assuming that P satisfies m >> P >> 1, so that 
both P and m / P  are large compared to unity, we 
can substitute (9) into (8) and get 

B = [LaSh] 1/(b+1) 

[ pg/(h+ 1) q_ p(l a/2)/(b+ 1)( m/P)g/(h+ ,,]. 

(10) 

Differentiating B with respect to P we see that 
d B / d  P = 0 when 

g b + , p g = [ g _  l + a / 2 ] b + , ( m / p ) g p  ' , / z .  (11) 

Substituting P determined by (11) into (10) we see 
that the cost of the two-level structure, optimized 
with respect to P, is proportional to m h, where 

g2 

h -  2 g -  l + a / 2 "  (12) 

When g > 1 - a/2,  we have g > h. That is, when 
using the best P, as given by (11), we have a 
two-level structure whose cost grows with m more 
slowly than the cost of the one-level structure. 
When g > l - a / 2  and m > > l ,  our use of ap- 
proximation (9) is consistent, since our best P 
does satisfy P >> 1 and m / P  >> 1. We can sum- 
marize the above discussion of two-level regular 
hierarchical systems by the following result. 

3.1. Theorem. A design procedure whose cost is 
proportional to m g where g > 1 - a /2  can be im- 
proved for large m by applying it separately to each 
level of a two-level regular structure. The best P 
(number of groups) is given by (11). The cost of the 
resulting two-level structure is proportional to m h, 
where h is given by (12). When the best P is" used, 
the contribution of the two levels to the delay, to the 
cost and to the B-term satisfy 

Ttop Dtop Btop g - 1 + a /2  

Tbottom Obottom Bbottom g 
(13) 

Proof. Substituting (11) in (10) we get Btop/ 
Bbottom = ( g - - 1  + a /2 ) /g .  The other two equali- 
ties are true whenever capacity is optimally alloc- 
ated, as shown in (7). 

We shall paraphrase (13) by saying that the 
optimal two-level regular structure is balanced. 
The contribution of both levels to the delay and 
their share of the budget must be in the propor- 
tion given by (13). The right-hand side of (13) 
decreases when g decreases, We may say that 
when g is small, most of the system migrates to 
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the bottom level, and that when g is small enough, 
two levels become unnecessary. P also decreases 
with g, and there will be less groups in the top 
level. This is satisfying intuitively, but the exact 
value of P should not be taken too seriously when 
small, since it was obtained assuming m >> P >> 1. 

3.2. Example. When the original design procedure 
consists of building a star network, we have g = 1, 
and equation (12) reduces to h = 2 / ( a  + 2). That 
is, the cost of the optimal regular two-level star 
system is proportional to m 2/(~+2), while the cost 
of a one-level system is proportional to m. When 
g = 1, equation (13) reduces to 

Ttop Dtop 
- -  - a / 2 .  

Tbottom Dbouom 
If two levels are better than one, will more levels 
be even better? Equation (12) already contains the 
answer: Decomposing a given system into two 
levels and applying the original design procedure 
to each can be considered as a new design proce- 
dure. Applying this new procedure to two levels is 
equivalent to applying the original procedure to 
four levels. When g > 1 -  a/2 ,  it follows from 
(12) that h > 1 - a / 2  and therefore four levels will 
be better than two when m is large enough. In 
general, let gj be the power of m characterizing 
the resulting cost and f-function when the given 
design procedure is applied to 2 j levels. Equation 
(12) can be written as 

g) 
g j + a =  2 g j -  l + a / 2  ' 

where go is the power of m characterizing the 
direct application of the given design procedure to 
one level. It is easy to see that when g > 1 - a/2 ,  
the sequence {g j} is monotonically decreasing 
and converges to 1 - a/2 .  

The argument of the previous paragraph has 
the flavor of an existence proof. It shows that by 
having enough levels the cost can be made to grow 
as an exponent of m arbitrarily close to 1 - a/2 .  
As m becomes larger, using more and more levels 
is justified. What is the best number of levels for a 
large but fixed m? To answer this question we 
must consider the constant coefficient multiplying 
mgJ. This constant, which was ignored until now, 
grows with the number of levels, and therefore 
tempers the trend towards more and more levels. 

The f-function and the cost of a system consist- 
ing of r levels, each of which is built according to 
a given design procedure, can be calculated ex- 
plicitly. Let ~ be the number of terminals per 
group in the j t h  level, starting from the top. If an 
r-level system is optimal, then every two consecu- 
tive levels must be optimal as a group of two-level 
systems. Equation (11) can therefore be rewritten, 
when g > 1 - a/2 ,  as 

b+l gb+lp jg - l+a /2  = [g  -- 1 + a / 2 ]  P j + , g ,  (14) 

and equation (13) can be generalized into 

Bj 
- 1 - (1 - a / 2 ) / g ,  (15) 

Bj+1 

where Bj is the contribution of the j t h  level to the 
B-term. From equations (14) and (15) we get the 
following result. 

3.3. Theorem. A design procedure whose cost is 
proportional to m g where g > 1 - a / 2  can be im- 
proved for large m by a multi-level regular organi- 
zation. 

r, the best number of levels, is given by 

r ( b + l )  In g - ( 1 - a / 2 )  l n m  (16) 
g g - 1 + a / 2  

and the cost of the system, when using this r, is 
proportional to 

[m (1-~/z)/(b+l) - 1] b+l. (17) 

When the optimal number of levels is used, the 
number of lines in all groups at all levels is the 
same, and must therefore be given by m 1/r. 

The proof is given in Appendix A. 
According to our assumptions we have a ~< 1 

and b ~< 1. When a is smaller, the best regular 
hierarchical system has fewer levels, since it is 
harder to save by shortening individual lines. When 
b is smaller, the best system has more levels and 
leads to larger improvements, since common large 
capacity lines become more economical. 

3.4. Example. Let the given design procedure be to 
build a star network (that is, g = 1). Let a and b 
be equal to 1. From equation (16) we see that the 
optimal number of levels is given in this case by 
lOgl6m, and that we should have 16 lines in every 
group. When using the optimal number of levels, 
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the cost of the resulting system is proportional to 
( L / T ) [ m  1 / 4 -  l ]  2 . 

The dependence of the B-term on r, the num- 
ber of levels, is given by equation (A.6) (see Ap- 
pendix A). We shall use the square of the expres- 
sion in equation (A.6) as a normalized cost of 
various systems. Fig. 1 gives this normalized cost 
as a function of m, the number of terminals, when 
r, the number of levels used, is equal to 1, 2, 3, 
and 4. The normalized cost of the system with the 
optimal number of levels is (m ]/4 - 1) 2 and, were 
it drawn on Fig. 1, it would have been very close 
to the lower envelope of the four straight lines 
drawn. 

investigated. The cost of communication resources 
was modeled by simple power laws. 

When the traffic is steady, the cost of simple 
one-level dedicated-channel systems is reasonable, 
since all channels will be well utilized. When you 
demand high performance, i.e., when you specify 
S and T such that ST << 1 and the system is very 
bursty, no congestion can be tolerated. Of course, 
such bursty systems are expensive, but sharing can 
reduce cost. Cost is reduced by sharing lightly 
utilized channels, and when the system is vet3' 
bursty, sharing does not lead to congestion. Such 
sharing can reduce cost even if the technology has 
no inherent economies of scale. 

To make sharing of dedicated channels possi- 
ble, we introduce regular hierarchical structures. 
Our regular structures are obtained by dividing 
the terminal population into equal groups, and 
placing a concentrator in the center of each. Regu- 
lar multi-level hierarchical structures can signifi- 
cantly improve the performance of bursty systems. 
The optimal structure is characterized by a bal- 
ance principle that gives the ratio of investment in 
any two consecutive levels. Another characteristic 
of the optimal regular hierarchical structures is 
that channels are organized in small groups of 
equal sizes. 

Our ability to analytically treat the structure of 
very large communication systems rests on two 
drastic simplifying assumptions: That traffic is 
very bursty, and that the dependence of cost on 
the number of terminals can be approximated by 
a simple power law ( f ( m ) =  rng). Even if these 
assumptions are too drastic for some applications, 
we expect the main results, summarized in the last 
two sentences of the previous paragraph, to be of 
value as starting points for heuristics. 

4. Conclusions 

We have assumed that the traffic level and the 
necessary performance are specified, and that the 
goal is to fulfill these requirements with the least 
cost. Burstiness is defined and serves as a natural 
dimensionless number to characterize the require- 
ments. We also assume that space is homoge- 
neous: Terminal density and traffic requirements 
are the same everywhere. The validity of our re- 
sults in the case of irregularity either in spatial 
distribution or in traffic requirements was not 
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Appendix A 

To simplify our formulas here let us rewrite 
equations (14) and (15) respectively as 

tP," = p,÷, (A.1) 
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and 

B i / B i  +1 = 1 / x ,  (A.2) 
where 

g 
X - -  

g - 1 + a / 2  ' 

s = 1 / x ,  

t = x (b+a) /g .  

Using l q i P  i = m and EiB~ = B, we can solve equa- 
tions (A.1) and (A.2) for P~ and B~ in terms of B, 
r, t, s,  x ,  a n d  m.  

When a 4= 2, we get 

Pi = t l / O  - s ~ [  m 1 - s  t -  r] s ' - 1 / 0  - s t ) ,  (A.3) 

ni  = X ' -1  1_ -- X B ( A . 4 )  
1 - i  r " 

Ignoring geometric constants, we also know that 
the following must be true: 

B1 _.~ [ L a S b p g ] l / ( b +  l) ( A . 5 )  

Using equations (A.3) and (A.4) in (A.5) we can 
get B as a f u n c t i o n  o f  m ,  r, a n d  the  c o n s t a n t s  t, 
s, a n d  x.  I s o l a t i n g  the d e p e n d e n c e  on  r w e  get 
that B is proportional  to 

( X  r -  1 ) [ m l - s t - r ]  (1/a-sr)g/(b+l).  ( A . 6 )  

Differentiating, we find that B is minimized as a 
function of r, when 

m 1 -~  = x r {b+ 1)/S. (A.7) 

Substituting equation (A.7) in (A.6) we get that B 
is proportional  to x r -  1 and is therefore propor- 
tional to rn { l - s ~ g / ~ b + l ) -  1. Since the cost is pro- 
portional to B b + l ,  it follows that when the best r 
is used, the system cost is proportional to 

[ m(a  - a/2>/(b + 1) -- l ib  + 1. (A.8) 

Substituting equation (A.7) in (A.3), we also see 
that when the best r is used, the Pi  do not depend 
on i, and they must therefore satisfy Pi = m 1/r .  

While the best number  of levels will depend on 
g, i.e., on the quality of the design procedure 
applied to each level, (A.8) shows that the system 

cost, when the best number  of levels is used, is 
independent of g. For larger m we can also ap- 
proximate (A.8) by rn a - a / 2  and see that the growth 
with m of the best regular hierarchical system 
only depends on the length dependence of line 
cost, and hardly depends on the capacity depen- 
dence of line cost. 
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